Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription.
نویسندگان
چکیده
Metabolic enzymes rarely regulate informational processes like gene expression. Yeast acetyl-CoA synthetases (Acs1p and 2p) are exceptional, as they are important not only for carbon metabolism but also are shown here to supply the acetyl-CoA for histone acetylation by histone acetyltransferases (HATs). acs2-Ts mutants exhibit global histone deacetylation, transcriptional defects, and synthetic growth defects with HAT mutants at high temperatures. In glycerol with ethanol, Acs1p is an alternate acetyl-CoA source for HATs. Rapid deacetylation after Acs2p inactivation suggests nuclear acetyl-CoA synthesis is rate limiting for histone acetylation. Different histone lysines exhibit distinct deacetylation rates, with N-terminal tail lysines deacetylated rapidly and H3 lysine 56 slowly. Yeast mitochondrial and nucleocytosolic acetyl-CoA pools are biochemically isolated. Thus, acetyl-CoA metabolism is directly linked to chromatin regulation and may affect diverse cellular processes in which acetylation and metabolism intersect, such as disease states and aging.
منابع مشابه
Nucleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme A Stimulates Autophagy and Prolongs Lifespan
Healthy aging depends on removal of damaged cellular material that is in part mediated by autophagy. The nutritional status of cells affects both aging and autophagy through as-yet-elusive metabolic circuitries. Here, we show that nucleocytosolic acetyl-coenzyme A (AcCoA) production is a metabolic repressor of autophagy during aging in yeast. Blocking the mitochondrial route to AcCoA by deletio...
متن کاملATP-citrate lyase links cellular metabolism to histone acetylation.
Histone acetylation in single-cell eukaryotes relies on acetyl coenzyme A (acetyl-CoA) synthetase enzymes that use acetate to produce acetyl-CoA. Metazoans, however, use glucose as their main carbon source and have exposure only to low concentrations of extracellular acetate. We have shown that histone acetylation in mammalian cells is dependent on adenosine triphosphate (ATP)-citrate lyase (AC...
متن کاملActivation of AMP-activated Protein Kinase by Metformin Induces Protein Acetylation in Prostate and Ovarian Cancer Cells.
AMP-activated protein kinase (AMPK) is an energy sensor and master regulator of metabolism. AMPK functions as a fuel gauge monitoring systemic and cellular energy status. Activation of AMPK occurs when the intracellular AMP/ATP ratio increases and leads to a metabolic switch from anabolism to catabolism. AMPK phosphorylates and inhibits acetyl-CoA carboxylase (ACC), which catalyzes carboxylatio...
متن کاملMetformin induces protein acetylation in cancer cells
AMP-activated protein kinase (AMPK) is an energy sensor and master regulator of metabolism. AMPK functions as a fuel gauge monitoring systemic and cellular energy status. Activation of AMPK occurs when the intracellular AMP/ATP ratio increases and leads to a metabolic switch from anabolism to catabolism. Metformin, widely used for diabetes type 2 treatment, activates AMPK by inhibiting mitochon...
متن کاملA histone point mutation that switches on autophagy
The multifaceted process of aging inevitably leads to disturbances in cellular metabolism and protein homeostasis. To meet this challenge, cells make use of autophagy, which is probably one of the most important pathways preserving cellular protection under stressful conditions. Thus, efficient autophagic flux is required for healthy aging in many if not all eukaryotic organisms. The regulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2006